本站域名 http://wepon.me
,wepon
是我的网名。站内分享一些机器学习、深度学习、数据挖掘、编程语言相关的文章,大多数是算法原理和实现,以及个人见解。我学识尚浅,文中难免会有错误,如您发现,请邮件告知,同时也欢迎与我交流。
以下是我的其它网站ID
XGBoost风靡Kaggle、天池、DataCastle、Kesci等国内外数据竞赛平台,是比赛夺冠的必备大杀器。我在之前参加过的一些比赛中,着实领略了其威力,也取得不少好成绩。如果把数据竞赛比作金庸笔下的武林,那么XGBoost可谓屠龙刀,号令天下,莫敢不从!倚天不出,谁与争锋?
XGBoost工具很多人都会用,但却很少有人知道其原理,在我写这篇文章之前,我也是一知半解,前阵子假期就抽空看了一下XGBoost的论文,了解了更多的细节,当然我不敢保证自己的理解完全正确,也有一些细节还没搞明白,特别是XGBoost工具的工程实现方面的内容,读的时候大多略过了。
这篇文章还在初稿中,本来没打算写的,但是前几天在知乎上看到一个相关的问题“机器学习算法中GBDT和XGBOOST的区别有哪些?”,就手痒回答了一下。这篇文章就先记录一下该问题下我的回答,以及过去我总结的对XGBoost的使用经验。等之后有空了,系统地总结GBDT以及XGBoost。
看了陈天奇大神的文章和slides,略抒己见,没有面面俱到,不恰当的地方欢迎讨论:
=============
回复 @肖岩在评论里的问题,因为有些公式放正文比较好。评论里讨论的问题的大意是 “xgboost代价函数里加入正则项,是否优于cart的剪枝”。其实陈天奇大神的slides里面也是有提到的,我当一下搬运工。
决策树的学习过程就是为了找出最优的决策树,然而从函数空间里所有的决策树中找出最优的决策树是NP-C问题,所以常采用启发式(Heuristic)的方法,如CART里面的优化GINI指数、剪枝、控制树的深度。这些启发式方法的背后往往隐含了一个目标函数,这也是大部分人经常忽视掉的。xgboost的目标函数如下:
其中正则项控制着模型的复杂度,包括了叶子节点数目T和leaf score的L2模的平方:
那这个跟剪枝有什么关系呢???
跳过一系列推导,我们直接来看xgboost中树节点分裂时所采用的公式:
这个公式形式上跟ID3算法(采用entropy计算增益) 、CART算法(采用gini指数计算增益) 是一致的,都是用分裂后的某种值 减去 分裂前的某种值,从而得到增益。为了限制树的生长,我们可以加入阈值,当增益大于阈值时才让节点分裂,上式中的gamma即阈值,它是正则项里叶子节点数T的系数,所以xgboost在优化目标函数的同时相当于做了预剪枝。另外,上式中还有一个系数lambda,是正则项里leaf score的L2模平方的系数,对leaf score做了平滑,也起到了防止过拟合的作用,这个是传统GBDT里不具备的特性。
朴素贝叶斯(Naive Bayes)是一种简单的分类算法,它的经典应用案例为人所熟知:文本分类(如垃圾邮件过滤)。很多教材都从这些案例出发,本文就不重复这些内容了,而把重点放在理论推导(其实很浅显,别被“理论”吓到),三种常用模型及其编码实现(Python)。
如果你对理论推导过程不感兴趣,可以直接逃到三种常用模型及编码实现部分,但我建议你还是看看理论基础部分。
另外,本文的所有代码都可以在这里获取
聚类分析简称聚类(clustering),是一个把数据集划分成子集的过程,每一个子集是一个簇(cluster),使得簇中的样本彼此相似,但与其他簇中的样本不相似。
聚类分析不需要事先知道样本的类别,甚至不用知道类别个数,因此它是一种无监督的学习算法,一般用于数据探索,比如群组发现和离群点检测,还可以作为其他算法的预处理步骤。
下面的动图展示的是一个聚类过程,感受一下:
不久前我在参加某比赛时,写了一些处理数据的代码,当时并没有采用SQL,而是用Python去实现。为了计算监测处理数据所耗费的时间,当时写了这样code:
1 | import time |
流形学习方法(Manifold Learning),简称流形学习,自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研究热点。在理论和应用上,流形学习方法都具有重要的研究意义。
假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。
上一篇文章总结了Keras的基本使用方法,相信用过的同学都会觉得不可思议,太简洁了。十多天前,我在github上发现这个框架的时候,关注Keras的人还比较少,这两天无论是github还是微薄,都看到越来越多的人关注和使用Keras。所以这篇文章就简单地再介绍一下Keras的使用,方便各位入门。
主要包括以下三个内容:
仍然以Mnist为例,代码中用的Mnist数据到这里下载
http://pan.baidu.com/s/1qCdS6,本文的代码在我的github上:dive_into _keras
之前我一直在使用Theano,前面五篇Deeplearning相关的文章也是学习Theano的一些笔记,当时已经觉得Theano用起来略显麻烦,有时想实现一个新的结构,就要花很多时间去编程,所以想过将代码模块化,方便重复使用,但因为实在太忙没有时间去做。最近发现了一个叫做Keras的框架,跟我的想法不谋而合,用起来特别简单,适合快速开发。
Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU。使用文档在这:http://keras.io/,这个框架貌似是刚刚火起来的,使用上的问题可以到github提issue:https://github.com/fchollet/keras
下面简单介绍一下怎么使用Keras,以Mnist数据库为例,编写一个CNN网络结构,你将会发现特别简单。
unix系统下的安装方法:到官网下载源包(目前最新版本为libsvm-3.20、liblinear-1.96),解压后,打开终端进入makefile所在的目录,键入make即可。
以下为一些基本的使用命令,ubuntu系统下。
(1). 从图像库得到csv文件 (csv文件里每一行存储一张图:label,feat1,feat2,…..),在终端下键入:
python gen_datafile.py
Otto Group Product Classification Challenge是Kaggle上目前正在进行的一个比赛,目前已1000+队伍参赛,由Otto公司赞助1W美刀,数据也是来自于该公司的产品,提供了train.csv、test.csv、samplesubmission.csv三份数据。train.csv里包含了6万多个样本,每个样本有一个id,93个特征值feat_1~feat_93,以及类别target,一共9种类别:class_1~class_9。test.csv里有14万多测试样本,只有id以及93个特征,参赛者的任务是对这些样本分类。
本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法。(本文会不断补充)
在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work。
本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值。(本文会不断补充)
运用梯度下降算法进行优化时,权重的更新规则中,在梯度项前会乘以一个系数,这个系数就叫学习速率η。下面讨论在训练时选取η的策略。
本文是《Neural networks and deep learning》概览 中第三章的一部分,讲machine learning算法中用得很多的交叉熵代价函数。
代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:
其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。
在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数:
这篇文章简单总结一下人脸检测的代码实现,基于OpenCV,C++版本。之所以强调C++版本是因为OpenCV有很多其他语言的接口,之前我也写过人脸检测的Python实现《Python-OpenCV人脸检测(代码)》,这篇文章则讲C++实现,其实大同小异,C++相比于Python实现代码写起来会繁琐一点,这也是语言本身决定的吧。
为了保持代码风格一致,C++实现与之前的Python实现一样,都将人脸检测、眼睛检测、框出人脸、框出眼睛、截取保存人脸各个功能封装为函数,方便移植。
在安装OpenCV的路径中(window系统),我们可以发现”…\opencv\sources\data”目录下有如下三个文件夹:
这正是OpenCV采用的算法。haarcascades文件下存放的是采用Haar特征的级联分类器(Cascade Classfier),hogcascades下存放采用HOG特征(梯度方向直方图)的级联分类器,lbpcascades下存放的是采用LBP特征的级联分类器。关于图像的Haar、LBP、HOG、SIFT等特征我将写另外的博文进行总结,这里就不详细展开。图中三个文件夹下存放了很多xml文件,这些是预先训练好的特征,用于构造分类器的,有人脸检测的、眼睛检测的、smile检测的、行人检测的等等。
在这篇文章中,仅以haarcascas下的”haarcascade_frontalface_alt.xml”和”haarcascade_eye.xml”作为例子。主要代码在下文讲解,更多代码也可以到我的github获取:here。
这个demo以下图为输入:
图像预处理
1 | Mat img = imread("obama.jpg"); |